
Detecting Objects in Scene Point Cloud: A Combinational Approach

Jing Huang and Suya You
University of Southern California

Los Angeles, CA, USA
{huang10,suya.you}@usc.edu

Abstract

Object detection is a fundamental task in computer vi-
sion. As the 3D scanning techniques become popular, di-
rectly detecting objects through 3D point cloud of a scene
becomes an immediate need. We propose an object de-
tection framework combining learning-based classification,
local descriptor, a new variance of RANSAC imposing
rigid-body constraint and an iterative process for multi-
object detection in continuous point clouds. The framework
not only takes global and local information into account,
but also benefits from both learning and empirical methods.
The experiments performed on the challenging ground Li-
dar dataset show the effectiveness of our method.

1. Introduction
Object detection is one of the most basic tasks in com-

puter vision. There are numerous works focusing on detec-
tion of human, faces, cars, ships, daily life objects, etc. Un-
til recently, however, most methods work on the 2D image
data. As the sensor technology develops fast these years,
3D point clouds of the real scenes have been increasingly
popular and precise, while there are much fewer methods
trying to directly detect objects from the 3D data. In this
paper, we focus on the task to detect some user-specified
target objects, e.g. industrial parts (Fig. 1), from a 3D scene
point cloud (Fig. 2).

3D point cloud data give certain advantages compared to
2D image data, e.g. the spatial geometric structure are clear
per se. However, there are quite a few challenges for 3D
point cloud data detection. Firstly, the texture information
is not as clear as 2D images; secondly, 3D data can still be
affected by noises and occlusions, in a different way from
2D data; thirdly, the objects have more degrees of freedom
in the 3D space, increasing the difficulty in alignment; fi-
nally, the point cloud data are typically very large with mil-
lions of points even in a single scene, thus the efficiency of
the algorithm is vital for an algorithm.

We propose a combinational approach to deal with the

Figure 1. The CAD models of the part targets, which will be con-
verted into point clouds by a virtual scanner in our system.

Figure 2. The colored visualization of the highly complicated
scene point cloud we are dealing with.

challenges above. Our main contribution includes: (1)
Combine various aspects of point cloud processing to form
a workable hierarchical scene understanding system upon
complicated point clouds; (2) Combine SVM and FPFH de-
scriptor [22] in per-point classification; (3) Propose an effi-
cient variant of RANSAC with rigid body constraint.

2. Related Work

Previous works in point cloud processing could be di-
vided into several categories based on their focus: segmen-
tation, classification, matching, modeling, registration and

1

detection. Object detection in the scene point cloud is a
systematic work that typically requires multiple techniques
in different aspects.

There are numerous works processing on different types
of point cloud data. One big category focuses on urban
scenes. For example, [1], [2] and [4] try to detect vehi-
cles; [5] and [6] concentrate on detecting poles; while [3]
tries to detect both vehicles and posts as well as other small
urban objects. Another category deals with indoor scenes.
[7] used a model-based method to detect chairs and tables
in the office. [8] aims at classifying objects such as office
chair. [9] uses a graphical model to capture various features
for indoor scenes. [18] tries to obtain 3D object maps from
the scanned point cloud of indoor household objects. How-
ever, very few of them work on industrial scene point cloud:
[10] reviewed some techniques used for recognition in in-
dustry as well as urban scenes. [17] presents a RANSAC
algorithm that could detect basic shapes, including planes,
spheres, cylinders, cones and tori, in the point clouds. How-
ever, it does not deal directly with the complex shapes that
might represent a part.

Extensive studies have been made on the 3D local de-
scriptors. For example, Spin Image [25] is one of the most
widely used 3D descriptor, and has variations such as [29].
Other 3D descriptors are extended from 2D descriptors, in-
cluding 3D Shape Context [30], 3D SURF [26] and 3D
SSIM [19]. Heat Kernel Signature [27] and its variation
[28] apply to non-rigid shapes. We will use two local de-
scriptors in different stages of our system i.e. FPFH [22] in
point classification and 3D-SSIM for matching.

Learning-based method is widely used in detection
and/or classification tasks. One of the most successful
learning-based framework is the boosted cascade frame-
work [11], which is based on AdaBoost [12] that selects the
dominating simple features to form rapid classifiers. Other
common techniques include SVM (e.g. [13]), Conditional
Random Field (e.g. [14]) and Markov networks (e.g. [15]
[16]), among which SVM is famous for its simple construc-
tion yet robust performance. MRF-based methods focus on
the segmentation of 3D scan data, which could be an alter-
native for segmentation and clustering in our framework.

3. System Overview
We depict the brief pipeline in Fig. 3.
The target library contains both mesh models and point

clouds. If a mesh is given, a virtual-scanning process is used
to create a corresponding point cloud in the library. The vir-
tual scanner simulates the way a real scanner works, using
a Z-buffer scan conversion and back-projection to eliminate
points on hidden or internal surfaces. The point clouds in
the target library are pre-processed so that features and de-
scriptors are prepared for matching.

Another part of offline processing is the training of the

Figure 3. Flowchart of our system.

SVM for the so-called regular points, including plane, pipe
and edge points. We calculate the Fast Point Feature His-
togram [22] for each point, then feed several trunk of a pos-
itive/negative clusters in the SVM trainer.

During online processing, we first calculate the FPFH at
each point and apply SVM-test on them. Points are thus
classified as one of the 4 regular categories (e.g. plane) or
others. Large connected components of the same category
are then extracted and fitted, while the remaining points are
clustered based on Euclidean distance.

Next, each cluster is passed through a cluster filter. The
cluster filter is designated to consist of one or several filters,
based on application, that can rule out or set aside clusters
with or without certain significant characteristic. We cur-
rently support one filter i.e. linearity filter.

The clusters that pass the test of the filter will be matched
with the targets in the library. The descriptors for the can-
didate clusters generated online are compared against the
descriptors for the targets generated offline and the trans-
formation is estimated if possible.

The key matching step is the feature comparison, the
process of comparing the feature representations with point
descriptors between the candidate clusters and part library
targets. Initially all nearest-neighbor correspondences, or
pairs of features, with the Nearest Neighbor Distance Ratio
(NNDR) value, are computed and then, a greedy filtering
strategy is used to look for the top four correspondences that
fit the distance constraint. A transformation is estimated
based on all correspondences in accord with the hypothesis,
and refined through Gram-Schmidt Orthogonalization. The
percentage of aligned points will be used as the matching
score. If the matching score between a cluster and a target

2

Figure 4. Illustration of Point Feature Histogram calculation.

is higher than some threshold, the cluster is considered to
be a detected instance of the target.

In case that there are multiple targets in a single clus-
ter, we iteratively remove the aligned part and check the
remaining part of the cluster until it’s small enough.

4. SVM-based Point Classification
We initially observed that, in our data set of large outdoor

industrial scene, a large portion of the points belong to basic
geometrical shapes, mainly planes (e.g. ground, ladders and
boxes) and pipe-shapes (cylindrical pipes, bent connection,
posts). Therefore, removing large clusters of such points
will largely ease and accelerate our processing and help us
focus on interested objects that we would like to detect.

4.1. Fast Point Feature Histogram

We select the 33-dimensional Fast Point Feature His-
togram (FPFH) as our descriptor. The reason for selecting
FPFH could be found in Section 8.1.

FPFH is an approximate and accelerated version of Point
Feature Histogram (PFH) [21]. PFH uses a histogram to en-
code the geometrical properties of a point’s neighborhood
by generalizing the mean curvature around the point. The
histogram representation is quantized based on all relation-
ships between the points and their estimated surface nor-
mals within the neighborhood (Fig. 4).

The local frame for computing the relative difference be-
tween two points ps and pt is defined in Equation 1.

u⃗ = n⃗s

v⃗ = u⃗× (pt − ps)

∥pt − ps∥2
w⃗ = u⃗× v⃗

(1)

With this frame, the difference between the point-normal
pair can be represented by the following angles (Equ. 2):

α = v⃗ · n⃗t

ϕ = u⃗ · (pt − ps)

∥pt − ps∥2
θ = arctan(w⃗ · n⃗t, u⃗ · n⃗t)

(2)

These angles are then quantized to form the histogram.

FPFH [22] reduces the computational complexity of
PFH from O(nk2) to O(nk), where k is the number of
neighbors for each point p in point cloud P, without losing
much of the discriminative power in PFH:

FPFH(pq) = PFH(pq) +
1

k

k∑
i=1

1

wk
· PFH(pk). (3)

In our experiment, we use the version implemented in
the open-source Point Cloud Library (PCL) [23].

4.2. Classification by SVM

In the offline training stage, We manually select and label
about 75 representative small trunks of point cloud, adding
up to around 200k labeled points.

For support vector machine, we use LIBSVM package
[31] with radial basis function (RBF) as kernel, in which
parameters C = 8 and γ = 0.5. Details of SVM could be
found in [31] and here we focus on the selection of training
data that determines the property of the classifier.

4.3. More Regular Classes: Edge and Thin Pipe

During experiments, we found that near places where
two or more planes intersect, some points would not be clas-
sified as plane point due to the interference of another plane
in their neighborhood. On the other hand, these points ob-
viously do not belong to parts when they group together as
a large cluster. Therefore, we assign them to another cate-
gory, namely the Edge.

Besides edges, we also found some thin pipes missing in
pipe detection. Experiments show that simply adding them
in the training dataset might have negative effects on pipes
with larger sizes, which suggests that they may need to be
regarded as a separate category from pipes (partially due to
the neighborhood size of the FPFH descriptor).

To judge the generalization ability, or distinctiveness of
pipes in different sizes, we perform a series of cross valida-
tion, summarized in Table 1. We can see that the 10/15/20-
cm pipe classifiers could classify the 10/15/20-cm pipes in-
terchangeably, while 5-cm pipe classifier will distinguish
the 5-cm pipe from the others. This evidence also offers
support to separate the category Thin-Pipe from the cate-
gory Pipe. If we need to distinguish between 10/15/20-cm
pipes, however, we may add the other sizes as negative ex-
amples to get more precise boundaries between them.

We perform SVM 4 times, once for each category. Points
are thus labeled as plane, pipe, edge, thin-pipe or others.
Figure 5 shows the classified pipe points and plane points.
Note that, some pipe-shaped objects e.g. tanks are so huge
that locally they are like planes. In our experiments, we
found it better for segmentation if we label the large tanks
with small curvature as planes rather than cylinders.

3

Training/Testing 5 cm 10 cm 15 cm 20 cm
5 cm Y N N N
10 cm N Y Y Y
15 cm N Y Y Y
20 cm N Y Y Y

Table 1. Cross validation result for pipes of different sizes. The left
column means the training data, and the top row means the testing
data. Y means at least 80% of the testing points are classified as
pipe, while N means the opposite.

Figure 5. Classification result of pipe points (in green), plane
points (in yellow), edge points (in blue), thin-pipe points (in dark
green) and the others (in red).

5. Segmentation and Clustering
There are many segmentation methods, e.g. the min-

cut [34] approach and other approaches derived from 2D
cases. However, since we have made quite confident classi-
fication of non-part (background) points, the segmentation
task could be done in a fast and light-weighted manner.

We iteratively select a random unvisited seed point and
expand it to unvisited neighboring points within a given
Euclidean distance using the classical Flood-Fill algorithm.
The neighbor threshold is determined by the granularity of
the input cloud. Apparently after finite steps the residual
cloud will be divided into a number of disjoint clusters.

We apply the clustering routine for five times. First we
do clustering on points labeled as one of the four categories
and get a list of plane/pipe/edge/thin-pipe clusters, respec-
tively. Then we subtract the big clusters from the orig-
inal point cloud. This is important since we don’t want
to remove small area of regular shapes that might lie on a
big part. Finally, clustering is performed on the remaining
points that we believe to be part points.

Using S(C) to denote the set of points in category C, the
algorithm could be written as:

S(Candidate) :=S(All)− S(Plane)− S(Pipe)

− S(Edge)− S(ThinPipe).
(4)

Finally, we can formally make an extendable definition
of the candidates by Equ. 5:

Figure 6. Segmentation result of the remaining candidate points.

S(Candidate) := S(Irregular)

= S(All)−
∪
i

S(Regulari),
(5)

where Regulari can be any connected component with
repetitive patterns and large size. This definition also offers
us the possibility of discovering candidates of new targets
that are actually not in the database.

Figure 6 shows the segmentation and clustering result
from the previous steps.

6. Cluster Filter
We observed that not all clusters are worth doing the de-

tailed matching. In fact, most clusters in a scene will not
be what we are interested in even at first glance. Therefore,
we first pass the clusters through filters that can quickly rule
out or set aside clusters with or without certain characteris-
tic. The filters should be extremely fast while able to filter
out quite a number of impossible candidates. Currently we
have implemented a linearity filter.

The linearity of a cluster is evaluated by the absolute
value of the correlation coefficient in the Least Squares Fit-
ting on the 2D points of the three projections on the x − y,
y − z and z − x planes. For example,

rxy =

∑n
i=1 (xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2 ∗
∑n

i=1 (yi − ȳ)2
, (6)

and the linearity score is measured by Equation 7:

r = max(|rxy|, |ryz|, |rzx|). (7)

The cluster would be considered to be linear if r > 0.9,
meaning that at least one of its projections could be fitted
by a line with high confidence. Note that planes and thin-
pipes may fall in this linear category, but since both of them
are supposed to be removed in the classification step, any
remaining linear clusters are considered as lines, missed
pipes, missed planes or noise. Experiments show that the
linearity scores of all representative targets are below 0.8,
with a substantial margin from the threshold of 0.9, mean-
ing that our target objects won’t be filtered out in this step.

4

In one of our experiments, only 1491 candidates are remain-
ing, out of 1905 initial clusters from previous steps, after
ruling out the most linear clusters.

7. Matching based on 3D SSIM Descriptor
7.1. Feature and Descriptor Generation

We follow the method in [19] to match between the can-
didate and the target point clouds. However, we use a sim-
plified version i.e. the normal similarity since there’s typi-
cally no intensity information in the targets.

The feature extraction process is performed such that 3D
peaks of local maxima of principle curvature are detected in
spatial-space. Given an interest point and its local region,
there are two major steps to construct the descriptor.

Firstly, the 3D extension of the 2D self-similarity surface
described in [20], is generated using the normal similarity
across the local region. The normal similarity between two
points x and y is defined by the angle between the normals,
as Equ. 8 suggests (Assume ||n⃗(·)|| = 1).

s(x, y, fn) = [π − cos−1(fn(x) · fn(y))]/π
= [π − cos−1(n⃗(x) · n⃗(y))]/π.

(8)

Note that when the angle is 0, the function returns 1;
whereas the angle is π, i.e. the normals are opposite to each
other, the function returns 0.

Then, the self-similarity surface is quantized along log-
spherical coordinates to form the 3D self-similarity descrip-
tor in a rotation-invariant manner. This is achieved by using
local reference system at each key point: the z-axis is the di-
rection of the normal; the x-axis is the direction of the prin-
cipal curvature; and the y-axis is the cross product of z and
x directions. In this application we set 5 divisions in radius,
longitude and latitude, respectively, and replace the values
in each cell with the average similarity value of all points in
the cell, resulting in a descriptor of 5× 5× 5 = 125 dimen-
sions. The dimension is greatly reduced without deduction
of performance, which is another important difference from
[19]. Finally, the descriptor is normalized by scaling the
dimensions with the maximum value to be 1.

7.2. Matching

Our detection is based on matching, during which the
descriptors for the candidate clusters generated online are
compared against the descriptors for the targets generated
offline and the transformation is estimated.

To establish the transformation, it’s natural to first calcu-
late the nearest-neighbor correspondences with any Nearest
Neighbor Distance Ratio (NNDR) (introduced in [24]) be-
tween the candidate cluster and the target from the library.
Then, unlike the normal RANSAC procedure, we propose a

greedy algorithm based on the observation that (1) the top-
ranked correspondences are more likely to be correct; (2)
the objects we are detecting are rigid industrial parts with
fixed standard size and shapes. In general, the transforma-
tion can be represented as Equ. 9:

p′ = sRp+ T. (9)

where s is the scaling factor, R is the rotation matrix and
T is the translation vector. For rigid-body transformation,
s = 1, so we need to solve for the 12 unknowns in 3 ×
3 matrix R and 3 × 1 vector T , which requires at most 4
correspondences of (p, p′) here. (Note, however, that there
are only 7 independent variables.)

We propose a greedy 4-round strategy to find the 4 cor-
respondences based on the following insight: rigid-body
transformation preserves the distance between the points.

Initially we have all nearest-neighbor correspondences
with any NNDR value in the candidate set; In the beginning
of round i, the correspondence with the minimum NNDR
value, ci = (ai, bi), is added to the final correspondence
set and removed from the candidate set. Then, for each of
the correspondence c′ = (a′, b′) in the candidate set, cal-
culate the Euclidean distance dist(a′, ai) and dist(b′, bi),
and if the ratio of the (squared) distance is larger than some
threshold (1.1), c′ will be removed from the candidate set.

If the candidate set becomes empty within 4 rounds, we
will discard the match as a failed rigid-body match; other-
wise the transformation could be estimated over at least 4
distance-compatible correspondences. Specifically, a 3× 3
affine transformation matrix and a 3D translation vector is
solved from the equations formed by the correspondences.

To prevent matching from being sensitive to the first cor-
respondence, multiple initial seeds are tried and only the
transformation with the highest alignment score is selected.
Finally, the rigid-body constraint is used again to refine the
result, through the Gram-Schmidt Orthogonalization of the
base vectors (R = (u⃗1, u⃗2, u⃗3)):

u⃗′
1 = u⃗1

u⃗′
2 = u⃗2 − proj u⃗′

1
(u⃗2)

u⃗′
3 = u⃗3 − proj u⃗′

1
(u⃗3)− proj u⃗′

2
(u⃗3)

(10)

which are then normalized using:

e⃗′i =
u⃗′
i

∥u⃗′
i∥

(i = 1, 2, 3). (11)

A point p in cluster A is said to be aligned with cluster B
if the nearest neighbor in cluster B to p under the transfor-
mation is within some threshold (5e-4 for industrial scene).
The alignment score is thus defined as the percentage of
aligned points. If the alignment score between a cluster and
a target is larger than 0.6, the cluster is considered to be a
detected instance of the target.

5

Figure 7. Parts detection in an assembly.

7.3. Iterative Detection

In case that there are multiple targets in a single clus-
ter, we iteratively remove the aligned part through the cloud
subtraction routine, and examine the remaining part of the
cluster until it’s too small to be matched.

Here is a demonstration of our algorithm against multi-
target detection in a single cluster. We cut an assembly into
several parts and use them as query. They were detected
one-by-one through our alignment and iterative detection
process (Fig. 7). Note that no segmentation is involved, and
the descriptors are not identical at the same location of the
part and the assembly.

8. Discussion
8.1. Choice of Descriptor for Classification

The principle for the selection of descriptor for classifi-
cation can be depicted as: everything should be as simple
as possible, but not simpler. This is because we aim at clas-
sifying basic geometric shapes. By simple we mean that
the calculation is not expensive, and the dimension is small.
One of the simplest features is Shape Index [33], however, it
only considers the principal curvatures, which is not distinc-
tive enough for multiple categories in our case. On the other
hand, brief experiments on simple shape classification show
that other descriptors such as Spin Image [25] and 3D Shape
Context [30] are outperformed by FPFH [22] in both accu-
racy and efficiency. Note that, however, the performance of
the descriptors could be quite different when they are used
in, for example, complex shape matching.

8.2. Choice of Learning Method

As mentioned in Section 2, there are many learning
methods available. We choose SVM as our classifier based
on the following reasons: Firstly, we only aim at classifying
simple geometric shapes, thus we need neither too compli-
cated descriptors nor too complicated classifiers; secondly,
we need the generalization ability from the classifier since
we only have a limit number of training examples (espe-
cially for the parts) while there might be many more types
of shapes; finally, although there can be as many as 5 cate-
gories, they are not equivalent because Part is the only cat-

Classifier #TrC #TrP #SV
Plane 14/23 94602 2069/2063
Pipe 14/9 91613 1496/1503
Edge 9/24 94838 1079/1121

Thin Pipe 8/22 83742 1020/1035

Table 2. Classifiers. TrC = Training Cluster, TrP = Training Point,
SV = Support Vector. The ratio means Positive/Negative.

Original Plane Pipe Edge Thinpipe
#Pts 25,135k 14,137k 8,767k 6,015k 5,534k
(%) 100.0% 56.2% 34.9% 23.9% 22.0%

Table 3. Remaining points after removal of each point category.

egory that will be used in detection, thus we propose a sub-
traction process over the 2-class classification results (Equ.
4, 5). We do want to consider the scalability when we try to
apply SVM to more complicated multi-class objects in the
future, however, since we don’t care much now about the
boundaries between categories other than the parts (e.g. big
pipes can be classified as plane, pipes can be classified as
thin pipes as long as the result is consistent), the algorithm
is efficient enough to solve the seemingly multi-class, but
intrinsically 2-class problem.

9. Experiment Results
9.1. SVM Classifier Training

Generally speaking we have five categories of the train-
ing clusters: Plane, Pipe, Edge, Thin-Pipe and Part. Since
we are using two-class classification, when we are train-
ing one kind of classifier, all clusters labeled as this class
will be regarded as the positive example, while the nega-
tive samples will be selected from the remaining categories.
We summarize the statistics of training data in Table 2. The
number of support vectors shows the complexity of the cat-
egory, in order to distinguish it from the others. Table 3
shows the number of points in the residual point cloud af-
ter removing each of the four categories. Nearly half of the
points are classified as plane, while after removing pipes
there are one third of points, and finally only one fifth of the
original points need to be considered in detection, which
shows the effectiveness of the point classification step.

9.2. Ground Lidar

In this section, we show the testing results of our method
on the industrial scene point cloud.

A result for the sub-scene is shown in Figure 8, where de-
tected parts are highlighted with colors and bounding boxes.
Figure 9 shows another result with respect to ground truth:
the red color means false negative i.e. the object is miss
detected or the point on the candidate cluster is misaligned;
the blue color means false positive i.e. there is no target at

6

Figure 8. Detected parts, including handles, valves, junctions and
flanges.

Figure 9. Detected parts on top of the tanks.

Category #Sub-cat. #Truth #TP #FP #FN
Ball 1 22 11 4 11

Connection 2 3 0 0 3
Flange 4 32 20 3 12
Handle 6 10 3 1 7

Spotlight 1 6 1 0 5
Tanktop 2 4 3 3 1

T-Junction 5 25 7 0 18
Valve 12 25 17 24 8
All 33 127 62 35 65

Table 4. Statistics of detection. There are 8 big categories, 33
sub-categories and 127 instances (Ground-truth) of targets in the
scene. Among them 62 are correctly identified (TP = True Posi-
tive), while 35 detections are wrong (FP = False Positive), and 65
instances are missed (FN = False Negative).

the position but the algorithm detected one, or the point on
the target is misaligned. Yellow/cyan both mean true posi-
tive i.e. the aligned points are close enough.

Table 4 and Fig. 10 show the statistical results of the in-
dustrial scene. Balls, flanges, tanktops and valves are more
successfully detected than the other objects.

9.3. Publicly Available Data

The experiment results show that our method works with
the virtual point clouds almost as well as with the real point
clouds. Since the virtual point clouds could be automat-

Figure 10. Precision-recall curve of the industrial part detection.

(a) (b)

Figure 11. Detection and alignment result from the cluttered scene.
The chef is detected twice from two different sub-parts.

ically generated from mesh models with the virtual scan-
ner, we can expect the fully-automatic matching between
the point clouds and the mesh models.

To compare our method with the other methods, we have
also tested our algorithm on some of the following publicly
available data. Figure 11 shows one detection result of the
cluttered scene [32]. Note that only one face is present in
the scene point cloud, and occlusions lead to discontinu-
ity of some parts, which make the data quite challenging.
Moreover, our point classification phase does not contribute
to the result in this case.

10. Conclusion

In this paper, we present an object detection frame-
work for 3D scene point cloud, using a combinational
approach containing SVM-based point classification, seg-
mentation, clustering, filtering, 3D self-similarity descrip-
tor and rigid-body RANSAC. The SVM+FPFH method in
pipe/plane/edge point classification gives a nice illustration
of how descriptor could be combined with training meth-
ods. Applying two local descriptors (FPFH and 3D-SSIM)
in different phases of processing shows that different de-
scriptors could be superior under different circumstances.
The proposed variant of RANSAC considering the rigid
body constraint also shows how prior knowledge could be
incorporated in the system. The experiment results show
the effectiveness of our method, especially for large clut-
tered industrial scenes.

7

Acknowledgement
This research was supported by CiSoft project sponsored

by Chevron. We appreciate the management of Chevron for
the permission to present this work.

References
[1] A. Patterson, P. Mordohai and K. Daniilidis. Object Detec-

tion from Large-Scale 3D Datasets using Bottom-up and Top-
down Descriptors. ECCV 2008. 2

[2] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik. Rec-
ognizing Objects in Range Data Using Regional Point De-
scriptors. ECCV 2004. 2

[3] A. Golovinskiy, V. G. Kim, T. Funkhouser. Shape-based
Recognition of 3D Point Clouds in Urban Environments.
ICCV 2009. 2

[4] Rapid Object Indexing Using Locality Sensitive Hashing and
Joint 3D-Signature Space Estimation. PAMI 2006. 2

[5] H. Yokoyama, H. Date, S. Kanai and H. Takeda. Detection and
Classification of Pole-like Objects from Mobile Laser Scan-
ning Data of Urban Environments. ACDDE 2012. 2

[6] M. Lehtomäki, A. Jaakkola, J. Hyyppä, A. Kukko, H. Kaarti-
nen. Detection of Vertical Pole-Like Objects in a Road Envi-
ronment Using Vehicle-Based Laser Scanning Data. Remote
Sensing 2010. 2

[7] B. Steder, G. Grisetti, M. V. Loock and W. Burgard. Robust
On-line Model-based Object Detection from Range Images.
IROS 2009. 2

[8] A. Nüchter, H. Surmann, J. Hertzberg. Automatic Classifica-
tion of Objects in 3D Laser Range Scans. IAS 2004. 2

[9] H. Koppula, A. Anand, T. Joachims and A. Saxena. Semantic
Labeling of 3D Point Clouds for Indoor Scenes. NIPS 2011.
2

[10] G. Vosselman, B. Gorte, G. Sithole, T. Rabbani. Recognising
Structure in Laser Scanner Point Clouds. IAPRS 2004. 2

[11] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proc. CVPR 2001. 2

[12] Y. Freund and R. Schapire. A Decision-Theoretic Gener-
alization of On-line Learning and an Application to Boost-
ing. Journal of Computer and System Sciences, 55(1):119-
139, August 1997. 2

[13] M. Himmelsbach, A. Müller, T. Lüttel and H.-J. Wünsche
LIDAR-based 3D Object Perception IWCTS 2008. 2

[14] X. Xiong, D. Huber. Using Context to Create Semantic 3D
Models of Indoor Environments BMVC 2010. 2

[15] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D.
Gupta, G. Heitz, A. Ng. Discriminative Learning of Markov
Random Fields for Segmentation of 3D Scan Data. In:
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) 2005, IEEE Computer Society, pp 169-176. 2

[16] R. Shapovalov, A. Velizhev. Cutting-Plane Training of Non-
associative Markov Network for 3D Point Cloud Segmenta-
tion. 3DIMPVT 2011. 2

[17] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for
Point-Cloud Shape Detection Computer Graphics Forum, vol.
26, no. 2, pp. 214-226, June 2007. 2

[18] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M.
Beetz. Towards 3D Point Cloud Based Object Maps for
Household environments. Robotics and Autonomous Systems
Journal (Special Issue on Semantic Knowledge), 2008. 2

[19] J. Huang, and S. You. Point Cloud Matching based on 3D
Self-Similarity International Workshop on Point Cloud Pro-
cessing (Affiliated with CVPR 2012), Providence, Rhode Is-
land, June 16, 2012. 2, 5

[20] E. Shechtman and M. Irani. Matching Local Self-Similarities
across Images and Videos. In Proc. CVPR, 2007. 5

[21] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz. Per-
sistent Point Feature Histograms for 3D Point Clouds. In Pro-
ceedings of the 10th International Conference on Intelligent
Autonomous Systems, 2008. 3

[22] R. B. Rusu, N. Blodow, and M. Beetz. Fast Point Feature
Histograms (FPFH) for 3D Registration in Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), Kobe, Japan, May 12-17 2009. 1, 2, 3, 6

[23] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library
(PCL). In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA ’11), Shanghai, China,
May 2011. 3

[24] K. Mikolajczyk and C. Schmid. A Performance Evaluation
of Local Descriptors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 27, no. 10, pp. 1615-1630, Oct.
2005. 5

[25] A. Johnson and M. Hebert. Object recognition by Match-
ing Oriented Points. In Proceedings of the Conference on
Computer Vision and Pattern Recognition, Puerto Rico, USA,
pages 684.689, 1997. ICCV 1997. 2, 6

[26] J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. Van
Gool. Hough Transform and 3D SURF for Robust Three Di-
mensional Classification. In: ECCV. 2010. 2

[27] J. Sun, M. Ovsjanikov, and L. Guibas. A Concise and Prov-
ably Informative Multi-scale Signature based on Heat Diffu-
sion. In: SGP. 2009 2

[28] M. M. Bronstein and I. Kokkinos. Scale-Invariant Heat Ker-
nel Signatures for Non-rigid Shape Recognition. In Proc.
CVPR 2010. 2

[29] S. Ruiz-Correa, L. G. Shapiro, and M. Meliă. A New
Signature-based Method for Efficient 3-D Object Recogni-
tion. In Proc. CVPR, 2001. 2

[30] M. Körtgen, G.-J. Park, M. Novotni, and R. Klein. 3D shape
matching with 3D Shape Contexts. In The 7th Central Euro-
pean Seminar on Computer Graphics, April 2003. 2, 6

[31] C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Sup-
port Vector Machines. (2011) [Online]. Available: http://
www.csie.ntu.edu.tw/˜cjlin/libsvm 3

[32] Ajmal Mian, M. Bennamoun and R. Owens. 3D Model-
based Object Recognition and Segmentation in Cluttered
Scenes. IEEE Trans. on Pattern Analysis and Machine In-
telligence (PAMI), vol. 28(10), pp. 1584–1601, 2006. 7

[33] J. J. Koenderink. Solid Shape. MIT Press, 1990. 6
[34] A. Golovinskiy and T. Funkhouser. Min-cut based Segmen-

tation of Point Clouds. in IEEE Workshop on Search in 3D
and Video (S3DV) at ICCV, Sept. 2009. 4

8

